Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 3868, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36890145

RESUMO

Understanding the molecular pathology of neurodevelopmental disorders should aid the development of therapies for these conditions. In MeCP2 duplication syndrome (MDS)-a severe autism spectrum disorder-neuronal dysfunction is caused by increased levels of MeCP2. MeCP2 is a nuclear protein that binds to methylated DNA and recruits the nuclear co-repressor (NCoR) complex to chromatin via an interaction with the WD repeat-containing proteins TBL1 and TBLR1. The peptide motif in MeCP2 that binds to TBL1/TBLR1 is essential for the toxicity of excess MeCP2 in animal models of MDS, suggesting that small molecules capable of disrupting this interaction might be useful therapeutically. To facilitate the search for such compounds, we devised a simple and scalable NanoLuc luciferase complementation assay for measuring the interaction of MeCP2 with TBL1/TBLR1. The assay allowed excellent separation between positive and negative controls, and had low signal variance (Z-factor = 0.85). We interrogated compound libraries using this assay in combination with a counter-screen based on luciferase complementation by the two subunits of protein kinase A (PKA). Using this dual screening approach, we identified candidate inhibitors of the interaction between MeCP2 and TBL1/TBLR1. This work demonstrates the feasibility of future screens of large compound collections, which we anticipate will enable the development of small molecule therapeutics to ameliorate MDS.


Assuntos
Transtorno do Espectro Autista , Receptores Citoplasmáticos e Nucleares , Animais , Proteínas Repressoras/genética , Luminescência , Proteína 2 de Ligação a Metil-CpG/metabolismo , Proteínas Nucleares/metabolismo
2.
J Med Chem ; 65(19): 12725-12746, 2022 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-36117290

RESUMO

Targeted protein degradation (TPD) strategies exploit bivalent small molecules to bridge substrate proteins to an E3 ubiquitin ligase to induce substrate degradation. Few E3s have been explored as degradation effectors due to a dearth of E3-binding small molecules. We show that genetically induced recruitment to the GID4 subunit of the CTLH E3 complex induces protein degradation. An NMR-based fragment screen followed by structure-guided analog elaboration identified two binders of GID4, 16 and 67, with Kd values of 110 and 17 µM in vitro. A parallel DNA-encoded library (DEL) screen identified five binders of GID4, the best of which, 88, had a Kd of 5.6 µM in vitro and an EC50 of 558 nM in cells with strong selectivity for GID4. X-ray co-structure determination revealed the basis for GID4-small molecule interactions. These results position GID4-CTLH as an E3 for TPD and provide candidate scaffolds for high-affinity moieties that bind GID4.


Assuntos
DNA , Ubiquitina-Proteína Ligases , DNA/metabolismo , Humanos , Proteólise , Ubiquitina-Proteína Ligases/metabolismo
3.
Pept Sci (Hoboken) ; 114(3): e24254, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35864841

RESUMO

Genetically-encoded cyclic peptide libraries allow rapid in vivo screens for inhibitors of any target protein of interest. In particular, the Split Intein Circular Ligation of Protein and Peptides (SICLOPPS) system exploits spontaneous protein splicing of inteins to produce intracellular cyclic peptides. A previous SICLOPPS screen against Aurora B kinase, which plays a critical role during chromosome segregation, identified several candidate inhibitors that we sought to recapitulate by chemical synthesis. We describe the syntheses of cyclic peptide hits and analogs via solution-phase macrocyclization of side chain-protected linear peptides obtained from standard solid-phase peptide synthesis. Cyclic peptide targets, including cyclo-[CTWAR], were designed to match both the variable portions and conserved cysteine residue of their genetically-encoded counterparts. Synthetic products were characterized by tandem high-resolution mass spectrometry to analyze a combination of exact mass, isotopic pattern, and collisional dissociation-induced fragmentation pattern. The latter analyses facilitated the distinction between targets and oligomeric side products, and served to confirm peptidic sequences in a manner that can be readily extended to analyses of complex biological samples. This alternative chemical synthesis approach for cyclic peptides allows cost-effective validation and facile chemical elaboration of hit candidates from SICLOPPS screens.

4.
Sci Adv ; 7(44): eabi5797, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705497

RESUMO

Pharmacological control of the ubiquitin-proteasome system (UPS) is of intense interest in drug discovery. Here, we report the development of chemical inhibitors of the ubiquitin-conjugating (E2) enzyme CDC34A (also known as UBE2R1), which donates activated ubiquitin to the cullin-RING ligase (CRL) family of ubiquitin ligase (E3) enzymes. A FRET-based interaction assay was used to screen for novel compounds that stabilize the noncovalent complex between CDC34A and ubiquitin, and thereby inhibit the CDC34A catalytic cycle. An isonipecotamide hit compound was elaborated into analogs with ~1000-fold increased potency in stabilizing the CDC34A-ubiquitin complex. These analogs specifically inhibited CDC34A-dependent ubiquitination in vitro and stabilized an E2~ubiquitin thioester reaction intermediate in cells. The x-ray crystal structure of a CDC34A-ubiquitin-inhibitor complex uncovered the basis for analog structure-activity relationships. The development of chemical stabilizers of the CDC34A-ubiquitin complex illustrates a general strategy for de novo discovery of molecular glue compounds that stabilize weak protein interactions.

5.
Front Chem ; 7: 23, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30815434

RESUMO

Interleukin-1ß (IL-1ß) binds to the IL-1 receptor (IL-1R) and is a key cytokine mediator of inflammasome activation. IL-1ß signaling leads to parturition in preterm birth (PTB) and contributes to the retinal vaso-obliteration characteristic of oxygen-induced retinopathy (OIR) of premature infants. Therapeutics targeting IL-1ß and IL-1R are approved to treat rheumatoid arthritis; however, all are large proteins with clinical limitations including immunosuppression, due in part to inhibition of NF-κB signaling, which is required for immuno-vigilance and cytoprotection. The all-D-amino acid peptide 1 (101.10, H-d-Arg-d-Tyr-d-Thr-d-Val-d-Glu-d-Leu-d-Ala-NH2) is an allosteric IL-1R modulator, which exhibits functional selectivity and conserves NF-κB signaling while inhibiting other IL-1-activated pathways. Peptide 1 has proven effective in experimental models of PTB and OIR. Seeking understanding of the structural requirements for the activity and biased signaling of 1, a panel of twelve derivatives was synthesized employing the various stereochemical isomers of α-amino-γ-lactam (Agl) and α-amino-ß-hydroxy-γ-lactam (Hgl) residues to constrain the D-Thr-D-Val dipeptide residue. Using circular dichroism spectroscopy, the peptide conformation in solution was observed to be contingent on Agl, Hgl, and Val stereochemistry. Moreover, the lactam mimic structure and configuration influenced biased IL-1 signaling in an in vitro panel of cellular assays as well as in vivo activity in murine models of PTB and OIR. Remarkably, all Agl and Hgl analogs of peptide 1 did not inhibit NF-κB signaling but blocked other pathways, such as JNK and ROCK2 phosphorylation contingent on structure and configuration. Efficacy in preventing preterm labor correlated with a capacity to block IL-1ß-induced IL-1ß synthesis. Furthermore, the importance of inhibition of JNK and ROCK2 phosphorylation for enhanced activity was highlighted for prevention of vaso-obliteration in the OIR model. Taken together, lactam mimic structure and stereochemistry strongly influenced conformation and biased signaling. Selective modulation of IL-1 signaling was proven to be particularly beneficial for curbing inflammation in models of preterm labor and retinopathy of prematurity (ROP). A class of biased ligands has been created with potential to serve as selective probes for studying IL-1 signaling in disease. Moreover, the small peptide mimic prototypes are promising leads for developing immunomodulatory therapies with easier administration and maintenance of beneficial effects of NF-κB signaling.

6.
Mol Cell Biol ; 35(4): 662-74, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25487573

RESUMO

Heterochromatin underpins gene repression, genome integrity, and chromosome segregation. In the fission yeast Schizosaccharomyces pombe, conserved protein complexes effect heterochromatin formation via RNA interference-mediated recruitment of a histone H3 lysine 9 methyltransferase to cognate chromatin regions. To identify small molecules that inhibit heterochromatin formation, we performed an in vivo screen for loss of silencing of a dominant selectable kanMX reporter gene embedded within fission yeast centromeric heterochromatin. Two structurally unrelated compounds, HMS-I1 and HMS-I2, alleviated kanMX silencing and decreased repressive H3K9 methylation levels at the transgene. The decrease in methylation caused by HMS-I1 and HMS-I2 was observed at all loci regulated by histone methylation, including centromeric repeats, telomeric regions, and the mating-type locus, consistent with inhibition of the histone deacetylases (HDACs) Clr3 and/or Sir2. Chemical-genetic epistasis and expression profiles revealed that both compounds affect the activity of the Clr3-containing Snf2/HDAC repressor complex (SHREC). In vitro HDAC assays revealed that HMS-I1 and HMS-I2 inhibit Clr3 HDAC activity. HMS-I1 also alleviated transgene reporter silencing by heterochromatin in Arabidopsis and a mouse cell line, suggesting a conserved mechanism of action. HMS-I1 and HMS-I2 bear no resemblance to known inhibitors of chromatin-based activities and thus represent novel chemical probes for heterochromatin formation and function.


Assuntos
Dioxanos/farmacologia , Regulação Fúngica da Expressão Gênica/efeitos dos fármacos , Inativação Gênica/efeitos dos fármacos , Heterocromatina/efeitos dos fármacos , Compostos Heterocíclicos com 2 Anéis/farmacologia , Piperazinas/farmacologia , Piridinas/farmacologia , Schizosaccharomyces/efeitos dos fármacos , Tiofenos/farmacologia , Animais , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Montagem e Desmontagem da Cromatina , Metilação de DNA , Dioxanos/síntese química , Dioxanos/química , Heterocromatina/química , Compostos Heterocíclicos com 2 Anéis/síntese química , Compostos Heterocíclicos com 2 Anéis/química , Histona Metiltransferases , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Camundongos , Piperazinas/síntese química , Piperazinas/química , Piridinas/síntese química , Piridinas/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Tiofenos/síntese química , Tiofenos/química
7.
Open Biol ; 4(11): 140163, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25392451

RESUMO

The chromosome passenger complex (CPC) is an essential regulator of mitosis and cytokinesis. The CPC consists of Aurora B kinase, inner centromere protein (INCENP), and the targeting subunits survivin and borealin/Dasra B. INCENP is a scaffolding subunit for the CPC and activates Aurora B via its conserved IN-box domain. We show that overexpression of soluble IN-box in HeLa cells affects endogenous CPC localization and produces a significant increase in multinucleated and micronucleated cells consistent with CPC loss of function. The dominant-negative effect of soluble IN-box expression depends on residues corresponding to hINCENP W845 and/or F881, suggesting that these are essential for Aurora B binding in vivo. We then screened a targeted library of small (five to nine residues long) circular peptide (CP) IN-box fragments generated using split intein circular ligation of proteins and peptides (SICLOPPS) methodology. We identified a number of CPs that caused modest but reproducible increases in rates of multinucleated and micronucleated cells. Our results provide proof of concept that inhibition of the Aurora B-IN-box interaction is a viable strategy for interfering with CPC function in vivo.


Assuntos
Aurora Quinase B/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Sequência de Aminoácidos , Aurora Quinase B/química , Aurora Quinase B/genética , Proteínas de Ciclo Celular , Proteínas Cromossômicas não Histona/química , Proteínas Cromossômicas não Histona/genética , Células HeLa , Humanos , Proteínas Inibidoras de Apoptose/metabolismo , Dados de Sequência Molecular , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Ligação Proteica/efeitos dos fármacos , Estrutura Terciária de Proteína , Transporte Proteico , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Survivina
8.
Nat Chem Biol ; 10(2): 156-163, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24316736

RESUMO

Weak protein interactions between ubiquitin and the ubiquitin-proteasome system (UPS) enzymes that mediate its covalent attachment to substrates serve to position ubiquitin for optimal catalytic transfer. We show that a small-molecule inhibitor of the E2 ubiquitin-conjugating enzyme Cdc34A, called CC0651, acts by trapping a weak interaction between ubiquitin and the E2 donor ubiquitin-binding site. A structure of the ternary CC0651-Cdc34A-ubiquitin complex reveals that the inhibitor engages a composite binding pocket formed from Cdc34A and ubiquitin. CC0651 also suppresses the spontaneous hydrolysis rate of the Cdc34A-ubiquitin thioester without decreasing the interaction between Cdc34A and the RING domain subunit of the E3 enzyme. Stabilization of the numerous other weak interactions between ubiquitin and UPS enzymes by small molecules may be a feasible strategy to selectively inhibit different UPS activities.


Assuntos
Aminoácidos/química , Compostos de Bifenilo/química , Enzimas de Conjugação de Ubiquitina/antagonistas & inibidores , Ubiquitina/química , Aminoácidos/farmacologia , Sítios de Ligação , Compostos de Bifenilo/farmacologia , Complexos de Coordenação/química , Cristalografia por Raios X , Ativação Enzimática/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Ligação Proteica , Estabilidade Proteica/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia
9.
J Am Chem Soc ; 135(46): 17349-58, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24134494

RESUMO

1,3-Dipolar cycloadditions of mesoionic 1,3-dipoles (Münchnones, imino-Münchnones, and phospha-Münchnones) with alkynes offer versatile, modular synthetic routes to pyrroles. Reactivity and regioselectivity differ markedly for different members of this series, and we report here the first general rationale for differences in reactivity by means of a systematic investigation of 1,3-dipolar cycloadditions involving electron-poor and electron-rich alkynes. Competition kinetic measurements indicate that Münchnones and phospha-Münchnones are nucleophilic 1,3-dipoles that react most rapidly with electron-poor alkynes. However, the regioselectivities of cycloadditions are found to undergo an inversion as a function of alkyne ionization potential. The exact point at which this occurs is different for the two dipoles, allowing rational control of the pyrrole formed. The origins of these reactivities and regioselectivities are examined computationally. Frontier molecular orbital predictions are found not to be accurate for these reactions, but transition state calculations give correct predictions of reactivity and selectivity, the origins of which can be analyzed using the distortion/interaction model of reactivity. Cycloadditions with electron-poor alkynes are shown to favor the regioisomer that has either the most favorable TS interaction energy (Münchnones or imino-Münchnones) or the smallest TS distortion energy (phospha-Münchnones). Cycloadditions with more electron-rich aryl-substituted alkynes, on the other hand, generally favor the regioisomer that has the smaller TS distortion energy. These insights delineate the synthetically important distinctions between Münchnones and phospha-Münchnones: phospha-Münchnones undergo highly regioselective cycloadditions with electron-poor alkynes that do not react selectively with Münchnones, and the reverse is true for cycloadditions of Münchnones with electron-rich alkynes.

10.
Org Lett ; 12(21): 4916-9, 2010 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-20939560

RESUMO

Amido-substituted Horner-Wadsworth-Emmons reagents can serve as precursors to 1,3-dipoles for use in cycloaddition. These compounds are assembled in one pot via the TMSOTf-catalyzed Arbuzov reaction of imines, acid chlorides, and phosphites. The coupling of this synthesis with alkyne cycloaddition provides a three-component synthesis of pyrroles. The dipoles can be prepared with a diverse range of imines and acid chlorides, and (3 + 2) cycloaddition with unsymmetrical alkynes is highly regiospecific, providing a modular approach to form substituted pyrroles.

11.
J Org Chem ; 75(12): 4261-73, 2010 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-20481447

RESUMO

The reaction of imines, acid chlorides, PR(3), and base generates a new class of 1,3-dipoles: phospha-Munchnones. These 1,3-dipoles can undergo cycloadditions with alkynes followed by loss of phosphine oxides to form pyrroles. Cycloaddition reactivity is dependent upon the PR(3) employed, with PhP(catechyl) (catechyl = o-O(2)C(6)H(4)) providing the most rapid cycloadditions and optimal pyrrole yields. (1)H, (13)C, and (31)P NMR analysis and computations indicate that electron-poor catechyl-substituted phosphonites and phosphites favor a cyclic 1,3-dipolar structure, while more electron-rich phosphines instead favor the valence tautomeric acyclic ylides. X-ray crystallographic studies confirm this. Density functional theory calculations support the wide variety of P-O interactions induced by different PR(3) groups and indicate that the most efficient concerted 1,3-dipolar cycloadditions are those for dipoles whose ground-state geometry is most like the transition-state geometry. Reactions of these dipoles with monosubstituted alkynes bearing an electron-withdrawing group are calculated to occur by stepwise mechanisms. The presence of the phosphorus unit creates a large electronic bias across the 1,3-dipole, allowing for regioselective cycloadditions with substituted alkynes.

12.
Org Lett ; 12(8): 1652-5, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20225885

RESUMO

Alpha-amino-beta-hydroxy-gamma-lactam 1 is a peptide mimic in which the Ser/Thr residue omega-, psi-, and chi-dihedral angle geometry all are constrained by the 5-membered lactam ring. Lactams 1 were made by employing N-(Fmoc)oxiranylglycine 3 as a bis-electrophile in TFE with cat. BzOH to sequentially alkylate and acylate a variety of amino acid derivatives in one pot. Solid-phase synthesis of beta-hydroxy-gamma-lactam 8, an analogue of the IL-1 modulator 101.10, was achieved using this method for studying Ser/Thr geometry.


Assuntos
Lactamas/química , Conformação Molecular , Peptídeos/química , Serina/química , Treonina/química
13.
J Am Chem Soc ; 130(31): 10052-3, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18616248

RESUMO

The structural features of a recently introduced class of 1,3-dipolar reagents have been computed by density functional theory and ab initio methods. The reagents are formally derived from Münchnones by replacement of the C O group with a PR3 unit. The parent species (PR3 = PH3) shows a long P...O interaction (2.55 A at the B3LYP/6-31+G(d) level), together with a nonplanar ring, and is best described as a weakly chelated acylamino-phosphonium ylide. The corresponding acyclic form, in which the P...O interaction is absent, is predicted to be 2-3 kcal mol-1 higher in enthalpy. Variation of the phosphorus substituents exerts a marked effect on the P...O distance, with electron-withdrawing groups favoring a covalent interaction [P...O 1.97 A for PR3 = PPh(catechyl)] and electron-donating groups favoring a weak interaction [P...O 3.92 A for PR3 = PPh3]. However, this variation has little effect on the relative energies of the cyclic and acyclic forms. The barriers for concerted cycloadditions with ethylene are 22.8 kcal mol-1 (PH3), 31.7 kcal mol-1 (PPh3), and 16.2 kcal mol-1 [PPh(catechyl) with axial O], which correspond with experimental observations and follow the same trend as the energies required to distort the dipole to the TS geometry.

15.
Org Lett ; 8(18): 3927-30, 2006 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-16928040

RESUMO

A new palladium-catalyzed synthesis of 3-amido-substituted beta-lactams is reported. This process involves the one-pot coupling of four components, imines, carbon monoxide, and acid chloride, providing a flexible route to construct this class of heterocycle. The generation of beta-lactams with two different imines can also be accomplished, providing a method to assemble these products with independent control over five separate substituents.


Assuntos
Monóxido de Carbono/química , Cloretos/química , Iminas/química , Paládio/química , beta-Lactamas/síntese química , Catálise , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...